Habitats and Field Methods

Friday May 12th 2017

Announcements

- Project consultations available today after class
 - Project Proposal due today at 5pm
 - Follow guidelines posted for lecture 4
- Field notebooks due today after class as well
- Preserved specimens available starting next Monday
- Quiz time!

Understanding New England Herpetofauna Habitat

Abiotic factors:

- Shelter
- Sunlight
- Water

Biotic factor:

- Food / Prey
- abundance
- Predator abundance

Many Herps, in general, are distributed in a very patchy manner because of these specific requirements

New England Habitats of Interest

Goal: Effectively predict what herpetofaunal diversity you should expect when you walk into one of these typical New England habitats

New England Habitats of Interest: Rivers / Streams

- Complex flowing water habitat
- Prone to variation (flooding and drying)
- Depth and velocity of water will impact diversity
 - Slow and deep
 - Fast and shallow
- Faster water = higher oxygen
- Canopy cover effects sunlight, which also affects diversity
- Who do we expect to live here? (Can we even generalize across all Rivers / Streams?)

New England Habitats of Interest: Lakes / Ponds

- Still or slow moving water
- Mostly permanent
- Deep water
- Retains ambient temperature longer
 - Winter deep warm water serves as refuges
 - Summer deep water
 becomes cooler, animals
 transition between shore
 and deep water
- Stable resources
- Typically lacking cover
- Who do we expect to live here?

New England Habitats of Interest: Swamps / Marshes

- Still or slow moving water
- Mostly permanent
 - But susceptible to drought
- Shallower than ponds / lakes
- Low oxygen
- Susceptible to complete freeze overs
- Canopy
 - Wooded vegetation swamp
 - Herbaceous vegetation marsh
- Much fewer fish predators
- Who do we expect to live here?

New England Habitats of Interest: Vernal Pools

- A subtype of swamp/marsh
- Completely still water
- Ephemeral, appearing in spring after winter snows, and evaporating throughout the summer
- Shallower than ponds / lakes
- Stable resources devoid of fish
- Typically within forest habitat
- Who do we expect to live here?

New England Habitats of Interest: Forest Floor

- Typically dry, but cover objects can retain moisture
 - Fallen logs, leaf litter, rocks
- Lots of cover
- Huge variety of food sources, but lots of potential predators
- Most common habitat in Connecticut
 - But most forest in Connecticut is **new growth** due to farming practices
- Who do we expect to live here?

New England Habitats of Interest: Meadow

- Dry more rapidly than forest
- Open, little or no canopy
- Cover, but of a different variety
 - Mostly in the form of hiding within grasses
- Fewer resources than forest
- Vulnerable to visual predators here
- Potential human influence
 - Tend to be old farmland, old farm buildings
- Who do we expect to live here?

New England Habitats of Interest: Sandy

- Habitat mostly associated with river flood plains & river banks
- Dry, moisture poor soil
- Open, little canopy when present
- Less cover
- Rare in CT, making species that live here comparatively rarer!
- Who do we expect to live here?

New England Habitats of Interest: Edge Habitat

- Edge habitats are where two different habitat types come together.
 - Natural ecotones
 - Disturbed habitat
 - Agricultural fields
 - Housing developments
- Can be an area of high biodiversity, but potentially high risk
 - Bears in CT River valley towns
- Potential to be best of both worlds

Field Herpetology Techniques & Methods

- Some sets of techniques that herpetologists employ
 - Techniques for finding / catching (other than, you know, just grabbing them)
 - Techniques for processing / taking data
 - Experimental techniques classically employed by herpetologists
- These techniques tend to be species dependent
 - Depends on **species abundance** and **movement** throughout its range
 - Depends on the unique natural history of a species

Catching Techniques: Pitfall Traps

- Useful for...
 - Biodiversity estimates
 - Discovering the edges of a species range
 - Finding very rare species
- Typically placed in grids
- Often using a fence to guide individuals into the bucket
- Really time intensive
 - Must constantly check, at least every 24 hrs
- Field guide page 23

Catching Techniques: Boards

- Similar in use to pitfall traps, but without nearly as much effort
- Basically act as artificial cover objects
 - End up being very good basking spots
- Useful for...
 - Biodiversity estimates of snakes and/or fossorial species
- Typically placed haphazardly
 O But these are hard to hike in
- Wooden boards to metal boards typically used
- Can check at any time

Catching Techniques: Lizard Noosing

- Used widely to catch small, extremely fast lizards that bask
- Like it sounds make a small noose from fishing line, slowly place it over the lizard's head, then yank!
- **DO NOT** try this on larger animals...it could result in damage or death
- Field guide pages 20 & 23

Catching Techniques: Lizard Noosing

Catching Techniques: Snake Hooks & Tongs

- Useful for large/venomous snakes
- Used in the same manner you would use your hands when handling large snakes
 - Support & manipulate the head and support the body
- Great care must be taken to avoid injury to the snake and the handler
- Field guide pages 17 & 20

Catching Techniques: Turtle Hoop Traps

- Used for aquatic turtles
- Can be used to accomplish the same goals as pit fall traps
 - But these are typically placed more haphazardly around turtle basking spots
- Traps are baited, then checked after 12 hours
- Adequate access to air must be ensured
- Field guide page 20 & 22

Catching Techniques: **Dip Nets**

- Useful for collecting tadpoles, salamanders larvae, and aquatic salamanders (great for adult newts), or baby turtles (or, if you're Andrew, 1 ft long Wood Turtles)
- Fine mesh prevents escape and damage to captured individuals
- Field guide pages 20 and 22

Processing Technique: Collection Bags

- Useful for later processing after doing lots of collecting
- Lizards and snakes
 - Cloth bags (pillowcases) with a loose knot at the top
 - Animals almost immediately calm down simulates being under a cover object
- Salamanders
 - Clear aquarium bag, place water or leaf litter inside, blow air in, then tie
- Field guide page 21

Processing Technique: Field Measurements

- Snout Vent Length (SVL) used for salamanders, lizards, and snakes
- Shell length (head to tail) straight line distance used for turtles
- Head body length used for
 frogs
- Field guide page 141

Processing Technique: More Field Measurements

- Alternatively, take a photo with a ruler, and measure SVL later using software
- Other useful tools:
 - Field scale
 - Tube for containing snakes + metal probe for sexing

Processing Technique: **Tissue Sampling for Genetics**

- DNA sequences allow for...
 - Reconstruction of evolutionary history
 - Mapping ancestral ranges
 - Assessing hybridization

Processing Technique: **Tissue Sampling for Genetics**

	Tail clips	Toe clips	Shed skin	Blood sample
Frogs	X	\checkmark	X	?
Salamanders	\checkmark	(Large only)	×	?
Turtles	X	X	×	\checkmark
Lizards and Snakes	\checkmark	\checkmark	\checkmark	?

Experimental Technique: Mark / Recapture

- A common method to measure population size and population range
- Strategy:
 - Survey an area by collecting many individuals
 - Mark/identify animals found,
 - Release animals found
 - Resurvey, note what animals you've already caught and new animals you didn't catch the first time
- Marking the animal:
 - Use natural markings
 - Paint the animal
 - Remove part of the animal
 - Inject a PIT tag

Figure 2.4: Tail notching is a cheap and harmless marking method

Experimental Technique: Clay Replica Studies

- A relatively recent method of studying predator-prey interaction
- Strategy:
 - Create clay replicas of animal you want to observe predation patterns on
 - Lay out the replicas in that animal's typical habitat, noting location
 - Recollect replicas and quantify number of predation attempts made on the replica

